IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0508413.html
   My bibliography  Save this paper

Stationary states of a spherical Minority Game with ergodicity breaking

Author

Listed:
  • Tobias Galla
  • David Sherrington

Abstract

Using generating functional and replica techniques, respectively, we study the dynamics and statics of a spherical Minority Game (MG), which in contrast with a spherical MG previously presented in J.Phys A: Math. Gen. 36 11159 (2003) displays a phase with broken ergodicity and dependence of the macroscopic stationary state on initial conditions. The model thus bears more similarity with the original MG. Still, all order parameters including the volatility can computed in the ergodic phases without making any approximations. We also study the effects of market impact correction on the phase diagram. Finally we discuss a continuous-time version of the model as well as the differences between on-line and batch update rules. Our analytical results are confirmed convincingly by comparison with numerical simulations. In an appendix we extend the analysis of the earlier spherical MG to a model with general time-step, and compare the dynamics and statics of the two spherical models.

Suggested Citation

  • Tobias Galla & David Sherrington, 2005. "Stationary states of a spherical Minority Game with ergodicity breaking," Papers cond-mat/0508413, arXiv.org, revised Aug 2005.
  • Handle: RePEc:arx:papers:cond-mat/0508413
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0508413
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johnson, Neil F. & Jefferies, Paul & Hui, Pak Ming, 2003. "Financial Market Complexity," OUP Catalogue, Oxford University Press, number 9780198526650.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Gyuchang & Kim, SooYong & Kim, Junghwan & Kim, Pyungsoo & Kang, Yoonjong & Park, Sanghoon & Park, Inho & Park, Sang-Bum & Kim, Kyungsik, 2009. "Structure of a financial cross-correlation matrix under attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3851-3858.
    2. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    3. Campos, Daniel & Llebot, Josep E. & Méndez, Vicenç, 2008. "Limited resources and evolutionary learning may help to understand the mistimed reproduction in birds caused by climate change," Theoretical Population Biology, Elsevier, vol. 74(1), pages 16-21.
    4. Gou, Chengling & Guo, Xiaoqian & Chen, Fang, 2008. "Study on system dynamics of evolutionary mix-game models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(25), pages 6353-6359.
    5. Mello, Bernardo A. & Cajueiro, Daniel O., 2008. "Minority games, diversity, cooperativity and the concept of intelligence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 557-566.
    6. Pištěk, Miroslav & Slanina, František, 2011. "Diversity of scales makes an advantage: The case of the Minority Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2549-2561.
    7. Li, Da-Ye & Nishimura, Yusaku & Men, Ming, 2014. "Fractal markets: Liquidity and investors on different time horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 144-151.
    8. Karpio, Krzysztof & Załuska–Kotur, Magdalena A. & Orłowski, Arkadiusz, 2007. "Gain–loss asymmetry for emerging stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 599-604.
    9. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    10. Ferreira, Fernando F. & de Oliveira, Viviane M. & Crepaldi, Antônio F. & Campos, Paulo R.A., 2005. "Agent-based model with heterogeneous fundamental prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 534-542.
    11. Oldham, Matthew, 2020. "Quantifying the concerns of Dimon and Buffett with data and computation," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    12. Ted Theodosopoulos, 2004. "Uncertainty relations in models of market microstructure," Papers math/0409076, arXiv.org, revised Feb 2005.
    13. Jørgen Vitting Andersen, 2014. "From Minority Games to $-Games," Working Papers halshs-00971373, HAL.
    14. A. Garcia-Bernabeu & J. V. Salcedo & A. Hilario & D. Pla-Santamaria & Juan M. Herrero, 2019. "Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA," Complexity, Hindawi, vol. 2019, pages 1-12, December.
    15. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
    16. Ni, Y.C. & Xu, C. & Hui, P.M. & Johnson, N.F., 2009. "Cooperative behavior in evolutionary snowdrift game with bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4856-4862.
    17. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
    18. Strozzi, Fernanda & Zaldívar, José-Manuel & Zbilut, Joseph P., 2007. "Recurrence quantification analysis and state space divergence reconstruction for financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 487-499.
    19. Campos, Daniel & Méndez, Vicenç & Llebot, Josep E. & Hernández, Germán A., 2010. "Analytical model for minority games with evolutionary learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2397-2407.
    20. Gao, Tingting & Chen, Yu, 2017. "A quantum anharmonic oscillator model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 307-314.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0508413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.