IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0402591.html
   My bibliography  Save this paper

Inverse Statistics in the Foreign Exchange Market

Author

Listed:
  • M. H. Jensen

    (Niels Bohr Institute, Denmark)

  • A. Johansen

    (My house, Humlebaek, Denmark)

  • F. Petroni

    (Dipartimento di Matematica and I.N.F.M. Universita dell'Aquila,, Italy)

  • I. Simonsen

    (Department of Physics, NTNU, Trondheim, Norway)

Abstract

We investigate intra-day foreign exchange (FX) time series using the inverse statistic analysis developed in [1,2]. Specifically, we study the time-averaged distributions of waiting times needed to obtain a certain increase (decrease) $\rho$ in the price of an investment. The analysis is performed for the Deutsch mark (DM) against the $US for the full year of 1998, but similar results are obtained for the Japanese Yen against the $US. With high statistical significance, the presence of "resonance peaks" in the waiting time distributions is established. Such peaks are a consequence of the trading habits of the markets participants as they are not present in the corresponding tick (business) waiting time distributions. Furthermore, a new {\em stylized fact}, is observed for the waiting time distribution in the form of a power law Pdf. This result is achieved by rescaling of the physical waiting time by the corresponding tick time thereby partially removing scale dependent features of the market activity.

Suggested Citation

  • M. H. Jensen & A. Johansen & F. Petroni & I. Simonsen, 2004. "Inverse Statistics in the Foreign Exchange Market," Papers cond-mat/0402591, arXiv.org, revised Mar 2004.
  • Handle: RePEc:arx:papers:cond-mat/0402591
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0402591
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guglielmo D'Amico & Filippo Petroni, 2012. "Weighted-indexed semi-Markov models for modeling financial returns," Papers 1205.2551, arXiv.org, revised Jun 2012.
    2. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico, 2019. "The stylized facts of prediction markets: Analysis of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 159-170.
    3. Michele Caraglio & Fulvio Baldovin & Attilio L. Stella, 2021. "How Fast Does the Clock of Finance Run?—A Time-Definition Enforcing Stationarity and Quantifying Overnight Duration," JRFM, MDPI, vol. 14(8), pages 1-15, August.
    4. Guglielmo D'Amico & Filippo Petroni, 2013. "Multivariate high-frequency financial data via semi-Markov processes," Papers 1305.0436, arXiv.org.
    5. Zou, Yongjie & Li, Honggang, 2014. "Time spans between price maxima and price minima in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 303-309.
    6. Zhou, Wei-Xing & Yuan, Wei-Kang, 2005. "Inverse statistics in stock markets: Universality and idiosyncracy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 433-444.
    7. G. D'Amico & F. Petroni & F. Prattico, 2013. "Semi-Markov Models in High Frequency Finance: A Review," Papers 1312.3894, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0402591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.