IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0205520.html
   My bibliography  Save this paper

Empirical nonextensive laws for the county distribution of total personal income and gross domestic product

Author

Listed:
  • Ernesto P. Borges

    (Escola Politecnica, Universidade Federal da Bahia, Brazil, and Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil)

Abstract

We analyze the cumulative distribution of total personal income of USA counties, and gross domestic product of Brazilian, German and United Kingdom counties, and also of world countries. We verify that generalized exponential distributions, related to nonextensive statistical mechanics, describe almost the whole spectrum of the distributions (within acceptable errors), ranging from the low region to the middle region, and, in some cases, up to the power-law tail. The analysis over about 30 years (for USA and Brazil) shows a regular pattern of the parameters appearing in the present phenomenological approach, suggesting a possible connection between the underlying dynamics of (at least some aspects of) the economy of a country (or of the whole world) and nonextensive statistical mechanics. We also introduce two additional examples related to geographical distributions: land areas of counties and land prices, and the same kind of equations adjust the data in the whole range of the spectrum.

Suggested Citation

  • Ernesto P. Borges, 2002. "Empirical nonextensive laws for the county distribution of total personal income and gross domestic product," Papers cond-mat/0205520, arXiv.org, revised Jan 2004.
  • Handle: RePEc:arx:papers:cond-mat/0205520
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0205520
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Soares, Abner D. & Moura Jr., Newton J. & Ribeiro, Marcelo B., 2016. "Tsallis statistics in the income distribution of Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 158-171.
    3. Rivera-Castro, Miguel A. & Miranda, José G.V. & Borges, Ernesto P. & Cajueiro, Daniel O. & Andrade, Roberto F.S., 2012. "A top–bottom price approach to understanding financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1489-1496.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0205520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.