IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0010222.html
   My bibliography  Save this paper

Power Laws are Boltzmann Laws in Disguise

Author

Listed:
  • Peter Richmond
  • Sorin Solomon

Abstract

Using a model based on generalised Lotka Volterra dynamics together with some recent results for the solution of generalised Langevin equations, we show that the equilibrium solution for the probability distribution of wealth has two characteristic regimes. For large values of wealth it takes the form of a Pareto style power law. For small values of wealth, (w less then wmin) the distribution function tends sharply to zero with infinite slope. The origin of this law lies in the random multiplicative process built into the model. Whilst such results have been known since the time of Gibrat, the present framework allows for a stable power law in an arbitrary and irregular global dynamics, so long as the market is `fair', i.e., there is no net advantage to any particular group or individual. We show for our model that the relative distribution of wealth follows a time independent distribution of this form even thought the total wealth may follow a more complicated dynamics and vary with time in an arbitrary manner. In developing the theory, we draw parallels with conventional thermodynamics and derive for the system the associated laws of `econodynamics' together with the associated econodynamic potentials. The power law that arises in the distribution function may then be identified with new additional logarithmic terms in the familiar Boltzmann distribution function for the system. The distribution function of stock market returns for our model, it is argued, will follow the same qualitative laws and exhibit power law behaviour.

Suggested Citation

  • Peter Richmond & Sorin Solomon, 2000. "Power Laws are Boltzmann Laws in Disguise," Papers cond-mat/0010222, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0010222
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0010222
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaldasch, Joachim, 2012. "Evolutionary model of the personal income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5628-5642.
    2. Geoff Willis, 2004. "Laser Welfare: First Steps in Econodynamic Engineering," Microeconomics 0408003, University Library of Munich, Germany.
    3. Kaldasch, Joachim, 2012. "Evolutionary model of the growth and size of firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3751-3769.
    4. G. Yaari & D. Stauffer & S. Solomon, 2008. "Intermittency and Localization," Papers 0802.3541, arXiv.org, revised Mar 2008.
    5. Kaldasch, Joachim, 2014. "Evolutionary model of the bank size distribution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Tanya Araújo & Miguel St. Aubyn, 2008. "Education, Neighborhood Effects And Growth: An Agent-Based Model Approach," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 99-117.
    3. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    4. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    5. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    6. Mikhail Anufriev & Giulio Bottazzi, 2005. "Price and Wealth Dynamics in a Speculative Market with an Arbitrary Number of Generic Technical Traders," LEM Papers Series 2005/06, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Maximilian Beikirch & Torsten Trimborn, 2020. "Novel Insights in the Levy-Levy-Solomon Agent-Based Economic Market Model," Papers 2002.10222, arXiv.org.
    8. Anufriev, Mikhail & Bottazzi, Giulio & Marsili, Matteo & Pin, Paolo, 2012. "Excess covariance and dynamic instability in a multi-asset model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1142-1161.
    9. Perepelitsa, Misha & Timofeyev, Ilya, 2019. "Asynchronous stochastic price pump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 356-364.
    10. Baosheng Yuan & Kan Chen, 2005. "Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations," Papers physics/0506224, arXiv.org.
    11. Hiroshi Takahashi, 2012. "An Analysis Of The Influence Of Dispersion Of Valuations On Financial Markets Through Agent-Based Modeling," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 143-166.
    12. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    13. Guo, Xu & McAleer, Michael & Wong, Wing-Keung & Zhu, Lixing, 2017. "A Bayesian approach to excess volatility, short-term underreaction and long-term overreaction during financial crises," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 346-358.
    14. Anca Gheorghiu & Ion Sp^anulescu, 2011. "Macrostate Parameter and Investment Risk Diagrams for 2008 and 2009," Papers 1101.4674, arXiv.org.
    15. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    16. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    17. Miklós Antal & Ardjan Gazheli & Jeroen C.J.M. van den Bergh, 2012. "Behavioural Foundations of Sustainability Transitions. WWWforEurope Working Paper No. 3," WIFO Studies, WIFO, number 46424, April.
    18. Olivier Brandouy & Angelo Corelli & Iryna Veryzhenko & Roger Waldeck, 2012. "A re-examination of the “zero is enough” hypothesis in the emergence of financial stylized facts," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 223-248, October.
    19. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    20. Anufriev, M. & Dindo, P.D.E., 2007. "Wealth Selection in a Financial Market with Heterogeneous Agents," CeNDEF Working Papers 07-10, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0010222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.