IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.13094.html
   My bibliography  Save this paper

Symmetry classification and invariant solutions of the classical geometric mean reversion process

Author

Listed:
  • Jin Zhang
  • Dapeng Gao

Abstract

Based on the Lie symmetry method, we investigate a Feynman-Kac formula for the classical geometric mean reversion process, which effectively describing the dynamics of short-term interest rates. The Lie algebra of infinitesimal symmetries and the corresponding one-parameter symmetry groups of the equation are obtained. An optimal system of invariant solutions are constructed by a derived optimal system of one-dimensional subalgebras. Because of taking into account a supply response to price rises, this equation provides for a more realistic assumption than the geometric Brownian motion in many investment scenarios.

Suggested Citation

  • Jin Zhang & Dapeng Gao, 2025. "Symmetry classification and invariant solutions of the classical geometric mean reversion process," Papers 2504.13094, arXiv.org.
  • Handle: RePEc:arx:papers:2504.13094
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.13094
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.13094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.