Author
Listed:
- Savita Pareek
- Sujit K. Ghosh
Abstract
The mean-variance portfolio model, based on the risk-return trade-off for optimal asset allocation, remains foundational in portfolio optimization. However, its reliance on restrictive assumptions about asset return distributions limits its applicability to real-world data. Parametric copula structures provide a novel way to overcome these limitations by accounting for asymmetry, heavy tails, and time-varying dependencies. Existing methods have been shown to rely on fixed or static dependence structures, thus overlooking the dynamic nature of the financial market. In this study, a semiparametric model is proposed that combines non-parametrically estimated copulas with parametrically estimated marginals to allow all parameters to dynamically evolve over time. A novel framework was developed that integrates time-varying dependence modeling with flexible empirical beta copula structures. Marginal distributions were modeled using the Skewed Generalized T family. This effectively captures asymmetry and heavy tails and makes the model suitable for predictive inferences in real world scenarios. Furthermore, the model was applied to rolling windows of financial returns from the USA, India and Hong Kong economies to understand the influence of dynamic market conditions. The approach addresses the limitations of models that rely on parametric assumptions. By accounting for asymmetry, heavy tails, and cross-correlated asset prices, the proposed method offers a robust solution for optimizing diverse portfolios in an interconnected financial market. Through adaptive modeling, it allows for better management of risk and return across varying economic conditions, leading to more efficient asset allocation and improved portfolio performance.
Suggested Citation
Savita Pareek & Sujit K. Ghosh, 2025.
"Semiparametric Dynamic Copula Models for Portfolio Optimization,"
Papers
2504.12266, arXiv.org.
Handle:
RePEc:arx:papers:2504.12266
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.12266. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.