IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.11258.html
   My bibliography  Save this paper

Multi-Agent Reinforcement Learning for Greenhouse Gas Offset Credit Markets

Author

Listed:
  • Liam Welsh
  • Udit Grover
  • Sebastian Jaimungal

Abstract

Climate change is a major threat to the future of humanity, and its impacts are being intensified by excess man-made greenhouse gas emissions. One method governments can employ to control these emissions is to provide firms with emission limits and penalize any excess emissions above the limit. Excess emissions may also be offset by firms who choose to invest in carbon reducing and capturing projects. These projects generate offset credits which can be submitted to a regulating agency to offset a firm's excess emissions, or they can be traded with other firms. In this work, we characterize the finite-agent Nash equilibrium for offset credit markets. As computing Nash equilibria is an NP-hard problem, we utilize the modern reinforcement learning technique Nash-DQN to efficiently estimate the market's Nash equilibria. We demonstrate not only the validity of employing reinforcement learning methods applied to climate themed financial markets, but also the significant financial savings emitting firms may achieve when abiding by the Nash equilibria through numerical experiments.

Suggested Citation

  • Liam Welsh & Udit Grover & Sebastian Jaimungal, 2025. "Multi-Agent Reinforcement Learning for Greenhouse Gas Offset Credit Markets," Papers 2504.11258, arXiv.org.
  • Handle: RePEc:arx:papers:2504.11258
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.11258
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.11258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.