IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.08324.html
   My bibliography  Save this paper

An Introduction to Double/Debiased Machine Learning

Author

Listed:
  • Achim Ahrens
  • Victor Chernozhukov
  • Christian Hansen
  • Damian Kozbur
  • Mark Schaffer
  • Thomas Wiemann

Abstract

This paper provides a practical introduction to Double/Debiased Machine Learning (DML). DML provides a general approach to performing inference about a target parameter in the presence of nuisance parameters. The aim of DML is to reduce the impact of nuisance parameter estimation on estimators of the parameter of interest. We describe DML and its two essential components: Neyman orthogonality and cross-fitting. We highlight that DML reduces functional form dependence and accommodates the use of complex data types, such as text data. We illustrate its application through three empirical examples that demonstrate DML's applicability in cross-sectional and panel settings.

Suggested Citation

  • Achim Ahrens & Victor Chernozhukov & Christian Hansen & Damian Kozbur & Mark Schaffer & Thomas Wiemann, 2025. "An Introduction to Double/Debiased Machine Learning," Papers 2504.08324, arXiv.org.
  • Handle: RePEc:arx:papers:2504.08324
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.08324
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.08324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.