IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.07855.html
   My bibliography  Save this paper

Foreign Signal Radar

Author

Listed:
  • Wei Jiao

Abstract

We introduce a new machine learning approach to detect value-relevant foreign information for both domestic and multinational companies. Candidate foreign signals include lagged returns of stock markets and individual stocks across 47 foreign markets. By training over 100,000 models, we capture stock-specific, time-varying relationships between foreign signals and U.S. stock returns. Foreign signals exhibit out-of-sample return predictability for a subset of U.S. stocks across domestic and multinational companies. Valuable foreign signals are not concentrated in those largest foreign markets nor foreign firms in the same industry as U.S. firms. Signal importance analysis reveals the price discovery of foreign information is significantly slower for information from emerging and low-media-coverage markets and among stocks with lower foreign institutional ownership but is accelerated during the COVID-19 crisis. Our study suggests that machine learning-based investment strategies leveraging foreign signals can emerge as important mechanisms to improve the market efficiency of foreign information.

Suggested Citation

  • Wei Jiao, 2025. "Foreign Signal Radar," Papers 2504.07855, arXiv.org.
  • Handle: RePEc:arx:papers:2504.07855
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.07855
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.07855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.