IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.07728.html
   My bibliography  Save this paper

The Scaling Behaviors in Achieving High Reliability via Chance-Constrained Optimization

Author

Listed:
  • Anand Deo
  • Karthyek Murthy

Abstract

We study the problem of resource provisioning under stringent reliability or service level requirements, which arise in applications such as power distribution, emergency response, cloud server provisioning, and regulatory risk management. With chance-constrained optimization serving as a natural starting point for modeling this class of problems, our primary contribution is to characterize how the optimal costs and decisions scale for a generic joint chance-constrained model as the target probability of satisfying the service/reliability constraints approaches its maximal level. Beyond providing insights into the behavior of optimal solutions, our scaling framework has three key algorithmic implications. First, in distributionally robust optimization (DRO) modeling of chance constraints, we show that widely used approaches based on KL-divergences, Wasserstein distances, and moments heavily distort the scaling properties of optimal decisions, leading to exponentially higher costs. In contrast, incorporating marginal distributions or using appropriately chosen f-divergence balls preserves the correct scaling, ensuring decisions remain conservative by at most a constant or logarithmic factor. Second, we leverage the scaling framework to quantify the conservativeness of common inner approximations and propose a simple line search to refine their solutions, yielding near-optimal decisions. Finally, given N data samples, we demonstrate how the scaling framework enables the estimation of approximately Pareto-optimal decisions with constraint violation probabilities significantly smaller than the Omega(1/N)-barrier that arises in the absence of parametric assumptions

Suggested Citation

  • Anand Deo & Karthyek Murthy, 2025. "The Scaling Behaviors in Achieving High Reliability via Chance-Constrained Optimization," Papers 2504.07728, arXiv.org.
  • Handle: RePEc:arx:papers:2504.07728
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.07728
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.07728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.