IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.06127.html
   My bibliography  Save this paper

Optimal classification with outcome performativity

Author

Listed:
  • Elizabeth Maggie Penn

Abstract

I consider the problem of classifying individual behavior in a simple setting of outcome performativity where the behavior the algorithm seeks to classify is itself dependent on the algorithm. I show in this context that the most accurate classifier is either a threshold or a negative threshold rule. A threshold rule offers the "good" classification to those individuals whose outcome likelihoods are greater than some cutpoint, while a negative threshold rule offers the "good" outcome to those whose outcome likelihoods are less than some cutpoint. While seemingly pathological, I show that a negative threshold rule can be the most accurate classifier when outcomes are performative. I provide an example of such a classifier, and extend the analysis to more general algorithm objectives, allowing the algorithm to differentially weigh false negatives and false positives, for example.

Suggested Citation

  • Elizabeth Maggie Penn, 2025. "Optimal classification with outcome performativity," Papers 2504.06127, arXiv.org.
  • Handle: RePEc:arx:papers:2504.06127
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.06127
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.06127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.