Author
Listed:
- Alejandro Rodriguez Dominguez
Abstract
Fundamental and necessary principles for achieving efficient portfolio optimization based on asset and diversification dynamics are presented. The Commonality Principle is a necessary and sufficient condition for identifying optimal drivers of a portfolio in terms of its diversification dynamics. The proof relies on the Reichenbach Common Cause Principle, along with the fact that the sensitivities of portfolio constituents with respect to the common causal drivers are themselves causal. A conformal map preserves idiosyncratic diversification from the unconditional setting while optimizing systematic diversification on an embedded space of these sensitivities. Causal methodologies for combinatorial driver selection are presented, such as the use of Bayesian networks and correlation-based algorithms from Reichenbach's principle. Limitations of linear models in capturing causality are discussed, and included for completeness alongside more advanced models such as neural networks. Portfolio optimization methods are presented that map risk from the sensitivity space to other risk measures of interest. Finally, the work introduces a novel risk management framework based on Common Causal Manifolds, including both theoretical development and experimental validation. The sensitivity space is predicted along the common causal manifold, which is modeled as a causal time system. Sensitivities are forecasted using SDEs calibrated to data previously extracted from neural networks to move along the manifold via its tangent bundles. An optimization method is then proposed that accumulates information across future predicted tangent bundles on the common causal time system manifold. It aggregates sensitivity-based distance metrics along the trajectory to build a comprehensive sensitivity distance matrix. This matrix enables trajectory-wide optimal diversification, taking into account future dynamics.
Suggested Citation
Alejandro Rodriguez Dominguez, 2025.
"Causal Portfolio Optimization: Principles and Sensitivity-Based Solutions,"
Papers
2504.05743, arXiv.org, revised Apr 2025.
Handle:
RePEc:arx:papers:2504.05743
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.05743. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.