IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.03743.html
   My bibliography  Save this paper

Modelling bounded rational decision-making through Wasserstein constraints

Author

Listed:
  • Benjamin Patrick Evans
  • Leo Ardon
  • Sumitra Ganesh

Abstract

Modelling bounded rational decision-making through information constrained processing provides a principled approach for representing departures from rationality within a reinforcement learning framework, while still treating decision-making as an optimization process. However, existing approaches are generally based on Entropy, Kullback-Leibler divergence, or Mutual Information. In this work, we highlight issues with these approaches when dealing with ordinal action spaces. Specifically, entropy assumes uniform prior beliefs, missing the impact of a priori biases on decision-makings. KL-Divergence addresses this, however, has no notion of "nearness" of actions, and additionally, has several well known potentially undesirable properties such as the lack of symmetry, and furthermore, requires the distributions to have the same support (e.g. positive probability for all actions). Mutual information is often difficult to estimate. Here, we propose an alternative approach for modeling bounded rational RL agents utilising Wasserstein distances. This approach overcomes the aforementioned issues. Crucially, this approach accounts for the nearness of ordinal actions, modeling "stickiness" in agent decisions and unlikeliness of rapidly switching to far away actions, while also supporting low probability actions, zero-support prior distributions, and is simple to calculate directly.

Suggested Citation

  • Benjamin Patrick Evans & Leo Ardon & Sumitra Ganesh, 2025. "Modelling bounded rational decision-making through Wasserstein constraints," Papers 2504.03743, arXiv.org.
  • Handle: RePEc:arx:papers:2504.03743
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.03743
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.03743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.