IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.03228.html
   My bibliography  Save this paper

Weak instrumental variables due to nonlinearities in panel data: A Super Learner Control Function estimator

Author

Listed:
  • Monika Avila Marquez

Abstract

A triangular structural panel data model with additive separable individual-specific effects is used to model the causal effect of a covariate on an outcome variable when there are unobservable confounders with some of them time-invariant. In this setup, a linear reduced-form equation might be problematic when the conditional mean of the endogenous covariate and the instrumental variables is nonlinear. The reason is that ignoring the nonlinearity could lead to weak instruments As a solution, we propose a triangular simultaneous equation model for panel data with additive separable individual-specific fixed effects composed of a linear structural equation with a nonlinear reduced form equation. The parameter of interest is the structural parameter of the endogenous variable. The identification of this parameter is obtained under the assumption of available exclusion restrictions and using a control function approach. Estimating the parameter of interest is done using an estimator that we call Super Learner Control Function estimator (SLCFE). The estimation procedure is composed of two main steps and sample splitting. We estimate the control function using a super learner using sample splitting. In the following step, we use the estimated control function to control for endogeneity in the structural equation. Sample splitting is done across the individual dimension. We perform a Monte Carlo simulation to test the performance of the estimators proposed. We conclude that the Super Learner Control Function Estimators significantly outperform Within 2SLS estimators.

Suggested Citation

  • Monika Avila Marquez, 2025. "Weak instrumental variables due to nonlinearities in panel data: A Super Learner Control Function estimator," Papers 2504.03228, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2504.03228
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.03228
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.03228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.