Author
Abstract
We introduce and study the persuasive calibration problem, where a principal aims to provide trustworthy predictions about underlying events to a downstream agent to make desired decisions. We adopt the standard calibration framework that regulates predictions to be unbiased conditional on their own value, and thus, they can reliably be interpreted at the face value by the agent. Allowing a small calibration error budget, we aim to answer the following question: what is and how to compute the optimal predictor under this calibration error budget, especially when there exists incentive misalignment between the principal and the agent? We focus on standard Lt-norm Expected Calibration Error (ECE) metric. We develop a general framework by viewing predictors as post-processed versions of perfectly calibrated predictors. Using this framework, we first characterize the structure of the optimal predictor. Specifically, when the principal's utility is event-independent and for L1-norm ECE, we show: (1) the optimal predictor is over-(resp. under-) confident for high (resp. low) true expected outcomes, while remaining perfectly calibrated in the middle; (2) the miscalibrated predictions exhibit a collinearity structure with the principal's utility function. On the algorithmic side, we provide a FPTAS for computing approximately optimal predictor for general principal utility and general Lt-norm ECE. Moreover, for the L1- and L-Infinity-norm ECE, we provide polynomial-time algorithms that compute the exact optimal predictor.
Suggested Citation
Yiding Feng & Wei Tang, 2025.
"Persuasive Calibration,"
Papers
2504.03211, arXiv.org.
Handle:
RePEc:arx:papers:2504.03211
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.03211. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.