IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.02841.html
   My bibliography  Save this paper

Dynamic Investment Strategies Through Market Classification and Volatility: A Machine Learning Approach

Author

Listed:
  • Jinhui Li
  • Wenjia Xie
  • Luis Seco

Abstract

This study introduces a dynamic investment framework to enhance portfolio management in volatile markets, offering clear advantages over traditional static strategies. Evaluates four conventional approaches : equal weighted, minimum variance, maximum diversification, and equal risk contribution under dynamic conditions. Using K means clustering, the market is segmented into ten volatility-based states, with transitions forecasted by a Bayesian Markov switching model employing Dirichlet priors and Gibbs sampling. This enables real-time asset allocation adjustments. Tested across two asset sets, the dynamic portfolio consistently achieves significantly higher risk-adjusted returns and substantially higher total returns, outperforming most static methods. By integrating classical optimization with machine learning and Bayesian techniques, this research provides a robust strategy for optimizing investment outcomes in unpredictable market environments.

Suggested Citation

  • Jinhui Li & Wenjia Xie & Luis Seco, 2025. "Dynamic Investment Strategies Through Market Classification and Volatility: A Machine Learning Approach," Papers 2504.02841, arXiv.org.
  • Handle: RePEc:arx:papers:2504.02841
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.02841
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.02841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.