Author
Listed:
- Sourish Das
- Sudeep Shukla
- Abbinav Sankar Kailasam
- Anish Rai
- Anirban Chakraborti
Abstract
Agricultural price volatility challenges sustainable finance, planning, and policy, driven by market dynamics and meteorological factors such as temperature and precipitation. In India, the Minimum Support Price (MSP) system acts as implicit crop insurance, shielding farmers from price drops without premium payments. We analyze the impact of climate on price volatility for soybean (Madhya Pradesh), rice (Assam), and cotton (Gujarat). Using ERA5-Land reanalysis data from the Copernicus Climate Change Service, we analyze historical climate patterns and evaluate two scenarios: SSP2.4.5 (moderate case) and SSP5.8.5 (severe case). Our findings show that weather conditions strongly influence price fluctuations and that integrating meteorological data into volatility models enhances risk-hedging. Using the Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model, we estimate conditional price volatility and identify cross-correlations between weather and price volatility movements. Recognizing MSP's equivalence to a European put option, we apply the Black-Scholes model to estimate its implicit premium, quantifying its fiscal cost. We propose this novel market-based risk-hedging mechanism wherein the government purchases insurance equivalent to MSP, leveraging Black-Scholes for accurate premium estimation. Our results underscore the importance of meteorological data in agricultural risk modeling, supporting targeted insurance and strengthening resilience in agricultural finance. This climate-informed financial framework enhances risk-sharing, stabilizes prices, and informs sustainable agricultural policy under growing climate uncertainty.
Suggested Citation
Sourish Das & Sudeep Shukla & Abbinav Sankar Kailasam & Anish Rai & Anirban Chakraborti, 2025.
"Predicting and Mitigating Agricultural Price Volatility Using Climate Scenarios and Risk Models,"
Papers
2503.24324, arXiv.org.
Handle:
RePEc:arx:papers:2503.24324
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.24324. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.