IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.18096.html
   My bibliography  Save this paper

Informer in Algorithmic Investment Strategies on High Frequency Bitcoin Data

Author

Listed:
  • Filip Stefaniuk
  • Robert 'Slepaczuk

Abstract

The article investigates the usage of Informer architecture for building automated trading strategies for high frequency Bitcoin data. Three strategies using Informer model with different loss functions: Root Mean Squared Error (RMSE), Generalized Mean Absolute Directional Loss (GMADL) and Quantile loss, are proposed and evaluated against the Buy and Hold benchmark and two benchmark strategies based on technical indicators. The evaluation is conducted using data of various frequencies: 5 minute, 15 minute, and 30 minute intervals, over the 6 different periods. Although the Informer-based model with Quantile loss did not outperform the benchmark, two other models achieved better results. The performance of the model using RMSE loss worsens when used with higher frequency data while the model that uses novel GMADL loss function is benefiting from higher frequency data and when trained on 5 minute interval it beat all the other strategies on most of the testing periods. The primary contribution of this study is the application and assessment of the RMSE, GMADL, and Quantile loss functions with the Informer model to forecast future returns, subsequently using these forecasts to develop automated trading strategies. The research provides evidence that employing an Informer model trained with the GMADL loss function can result in superior trading outcomes compared to the buy-and-hold approach.

Suggested Citation

  • Filip Stefaniuk & Robert 'Slepaczuk, 2025. "Informer in Algorithmic Investment Strategies on High Frequency Bitcoin Data," Papers 2503.18096, arXiv.org.
  • Handle: RePEc:arx:papers:2503.18096
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.18096
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.18096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.