IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.18029.html
   My bibliography  Save this paper

Unleashing the power of text for credit default prediction: Comparing human-written and generative AI-refined texts

Author

Listed:
  • Zongxiao Wu
  • Yizhe Dong
  • Yaoyiran Li
  • Baofeng Shi

Abstract

This study explores the integration of a representative large language model, ChatGPT, into lending decision-making with a focus on credit default prediction. Specifically, we use ChatGPT to analyse and interpret loan assessments written by loan officers and generate refined versions of these texts. Our comparative analysis reveals significant differences between generative artificial intelligence (AI)-refined and human-written texts in terms of text length, semantic similarity, and linguistic representations. Using deep learning techniques, we show that incorporating unstructured text data, particularly ChatGPT-refined texts, alongside conventional structured data significantly enhances credit default predictions. Furthermore, we demonstrate how the contents of both human-written and ChatGPT-refined assessments contribute to the models' prediction and show that the effect of essential words is highly context-dependent. Moreover, we find that ChatGPT's analysis of borrower delinquency contributes the most to improving predictive accuracy. We also evaluate the business impact of the models based on human-written and ChatGPT-refined texts, and find that, in most cases, the latter yields higher profitability than the former. This study provides valuable insights into the transformative potential of generative AI in financial services.

Suggested Citation

  • Zongxiao Wu & Yizhe Dong & Yaoyiran Li & Baofeng Shi, 2025. "Unleashing the power of text for credit default prediction: Comparing human-written and generative AI-refined texts," Papers 2503.18029, arXiv.org.
  • Handle: RePEc:arx:papers:2503.18029
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.18029
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.18029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.