Author
Listed:
- Bokai Cao
- Xueyuan Lin
- Yiyan Qi
- Chengjin Xu
- Cehao Yang
- Jian Guo
Abstract
Market simulator tries to create high-quality synthetic financial data that mimics real-world market dynamics, which is crucial for model development and robust assessment. Despite continuous advancements in simulation methodologies, market fluctuations vary in terms of scale and sources, but existing frameworks often excel in only specific tasks. To address this challenge, we propose Financial Wind Tunnel (FWT), a retrieval-augmented market simulator designed to generate controllable, reasonable, and adaptable market dynamics for model testing. FWT offers a more comprehensive and systematic generative capability across different data frequencies. By leveraging a retrieval method to discover cross-sectional information as the augmented condition, our diffusion-based simulator seamlessly integrates both macro- and micro-level market patterns. Furthermore, our framework allows the simulation to be controlled with wide applicability, including causal generation through "what-if" prompts or unprecedented cross-market trend synthesis. Additionally, we develop an automated optimizer for downstream quantitative models, using stress testing of simulated scenarios via FWT to enhance returns while controlling risks. Experimental results demonstrate that our approach enables the generalizable and reliable market simulation, significantly improve the performance and adaptability of downstream models, particularly in highly complex and volatile market conditions. Our code and data sample is available at https://anonymous.4open.science/r/fwt_-E852
Suggested Citation
Bokai Cao & Xueyuan Lin & Yiyan Qi & Chengjin Xu & Cehao Yang & Jian Guo, 2025.
"Financial Wind Tunnel: A Retrieval-Augmented Market Simulator,"
Papers
2503.17909, arXiv.org.
Handle:
RePEc:arx:papers:2503.17909
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.17909. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.