IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.17737.html
   My bibliography  Save this paper

Bayesian Optimization for CVaR-based portfolio optimization

Author

Listed:
  • Robert Millar
  • Jinglai Li

Abstract

Optimal portfolio allocation is often formulated as a constrained risk problem, where one aims to minimize a risk measure subject to some performance constraints. This paper presents new Bayesian Optimization algorithms for such constrained minimization problems, seeking to minimize the conditional value-at-risk (a computationally intensive risk measure) under a minimum expected return constraint. The proposed algorithms utilize a new acquisition function, which drives sampling towards the optimal region. Additionally, a new two-stage procedure is developed, which significantly reduces the number of evaluations of the expensive-to-evaluate objective function. The proposed algorithm's competitive performance is demonstrated through practical examples.

Suggested Citation

  • Robert Millar & Jinglai Li, 2025. "Bayesian Optimization for CVaR-based portfolio optimization," Papers 2503.17737, arXiv.org.
  • Handle: RePEc:arx:papers:2503.17737
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.17737
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.17737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.