IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.16503.html
   My bibliography  Save this paper

AIDetection: A Generative AI Detection Tool for Educators Using Syntactic Matching of Common ASCII Characters As Potential 'AI Traces' Within Users' Internet Browser

Author

Listed:
  • Andy Buschmann

Abstract

This paper introduces a simple JavaScript-based web application designed to assist educators in detecting AI-generated content in student essays and written assignments. Unlike existing AI detection tools that rely on obfuscated machine learning models, AIDetection.info employs a heuristic-based approach to identify common syntactic traces left by generative AI models, such as ChatGPT, Claude, Grok, DeepSeek, Gemini, Llama/Meta, Microsoft Copilot, Grammarly AI, and other text-generating models and wrapper applications. The tool scans documents in bulk for potential AI artifacts, as well as AI citations and acknowledgments, and provides a visual summary with downloadable Excel and CSV reports. This article details its methodology, functionalities, limitations, and applications within educational settings.

Suggested Citation

  • Andy Buschmann, 2025. "AIDetection: A Generative AI Detection Tool for Educators Using Syntactic Matching of Common ASCII Characters As Potential 'AI Traces' Within Users' Internet Browser," Papers 2503.16503, arXiv.org.
  • Handle: RePEc:arx:papers:2503.16503
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.16503
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.16503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.