IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.15965.html
   My bibliography  Save this paper

Practical Portfolio Optimization with Metaheuristics:Pre-assignment Constraint and Margin Trading

Author

Listed:
  • Hang Kin Poon

Abstract

Portfolio optimization is a critical area in finance, aiming to maximize returns while minimizing risk. Metaheuristic algorithms were shown to solve complex optimization problems efficiently, with Genetic Algorithms and Particle Swarm Optimization being among the most popular methods. This paper introduces an innovative approach to portfolio optimization that incorporates pre-assignment to limit the search space for investor preferences and better results. Additionally, taking margin trading strategies in account and using a rare performance ratio to evaluate portfolio efficiency. Through an illustrative example, this paper demonstrates that the metaheuristic-based methodology yields superior risk-adjusted returns compared to traditional benchmarks. The results highlight the potential of metaheuristics with help of assets filtering in enhancing portfolio performance in terms of risk adjusted return.

Suggested Citation

  • Hang Kin Poon, 2025. "Practical Portfolio Optimization with Metaheuristics:Pre-assignment Constraint and Margin Trading," Papers 2503.15965, arXiv.org.
  • Handle: RePEc:arx:papers:2503.15965
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.15965
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.15965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.