Author
Listed:
- Daniel Cunha Oliveira
- Dylan Sandfelder
- Andr'e Fujita
- Xiaowen Dong
- Mihai Cucuringu
Abstract
This paper extends the tactical asset allocation literature by incorporating regime modeling using techniques from machine learning. We propose a novel model that classifies current regimes, forecasts the distribution of future regimes, and integrates these forecasts with the historical performance of individual assets to optimize portfolio allocations. Utilizing a macroeconomic data set from the FRED-MD database, our approach employs a modified k-means algorithm to ensure consistent regime classification over time. We then leverage these regime predictions to estimate expected returns and volatilities, which are subsequently mapped into portfolio allocations using various sizing schemes. Our method outperforms traditional benchmarks such as equal-weight, buy-and-hold, and random regime models. Additionally, we are the first to apply a regime detection model from a large macroeconomic dataset to tactical asset allocation, demonstrating significant improvements in portfolio performance. Our work presents several key contributions, including a novel data-driven regime detection algorithm tailored for uncertainty in forecasted regimes and applying the FRED-MD data set for tactical asset allocation.
Suggested Citation
Daniel Cunha Oliveira & Dylan Sandfelder & Andr'e Fujita & Xiaowen Dong & Mihai Cucuringu, 2025.
"Tactical Asset Allocation with Macroeconomic Regime Detection,"
Papers
2503.11499, arXiv.org, revised Mar 2025.
Handle:
RePEc:arx:papers:2503.11499
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.11499. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.