IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.11416.html
   My bibliography  Save this paper

Nonlinear Forecast Error Variance Decompositions with Hermite Polynomials

Author

Listed:
  • Quinlan Lee

Abstract

A novel approach to Forecast Error Variance Decompositions (FEVD) in nonlinear Structural Vector Autoregressive models with Gaussian innovations is proposed, called the Hermite FEVD (HFEVD). This method employs a Hermite polynomial expansion to approximate the future trajectory of a nonlinear process. The orthogonality of Hermite polynomials under the Gaussian density facilitates the construction of the decomposition, providing a separation of shock effects by time horizon, by components of the structural innovation and by degree of nonlinearity. A link between the HFEVD and nonlinear Impulse Response Functions is established and distinguishes between marginal and interaction contributions of shocks. Simulation results from standard nonlinear models are provided as illustrations and an application to fiscal policy shocks is examined.

Suggested Citation

  • Quinlan Lee, 2025. "Nonlinear Forecast Error Variance Decompositions with Hermite Polynomials," Papers 2503.11416, arXiv.org.
  • Handle: RePEc:arx:papers:2503.11416
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.11416
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.11416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.