IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.11375.html
   My bibliography  Save this paper

Difference-in-Differences Meets Synthetic Control: Doubly Robust Identification and Estimation

Author

Listed:
  • Yixiao Sun
  • Haitian Xie
  • Yuhang Zhang

Abstract

Difference-in-Differences (DiD) and Synthetic Control (SC) are widely used methods for causal inference in panel data, each with its own strengths and limitations. In this paper, we propose a novel methodology that integrates the advantages of both DiD and SC approaches. Our integrated approach provides a doubly robust identification strategy for causal effects in panel data with a group structure, identifying the average treatment effect on the treated (ATT) under either the parallel trends assumption or the group-level SC assumption. Building on this identification result, we develop a unified semiparametric framework for estimating the ATT. Notably, while the identification-robust moment function satisfies Neyman orthogonality under the parallel trends assumption, it does not under the SC assumption, leading to different asymptotic variances under these two identification strategies. To address this challenge, we propose a multiplier bootstrap method that consistently approximates the asymptotic distribution, regardless of which identification assumption holds. Furthermore, we extend our methodology to accommodate repeated cross-sectional data and staggered treatment designs. As an empirical application, we apply our method to evaluate the impact of the 2003 minimum wage increase in Alaska on family income.

Suggested Citation

  • Yixiao Sun & Haitian Xie & Yuhang Zhang, 2025. "Difference-in-Differences Meets Synthetic Control: Doubly Robust Identification and Estimation," Papers 2503.11375, arXiv.org.
  • Handle: RePEc:arx:papers:2503.11375
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.11375
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.11375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.