Author
Listed:
- Kaizhao Liu
- Qi Long
- Zhekun Shi
- Weijie J. Su
- Jiancong Xiao
Abstract
Aligning large language models (LLMs) with diverse human preferences is critical for ensuring fairness and informed outcomes when deploying these models for decision-making. In this paper, we seek to uncover fundamental statistical limits concerning aligning LLMs with human preferences, with a focus on the probabilistic representation of human preferences and the preservation of diverse preferences in aligned LLMs. We first show that human preferences can be represented by a reward model if and only if the preference among LLM-generated responses is free of any Condorcet cycle. Moreover, we prove that Condorcet cycles exist with probability converging to one exponentially fast under a probabilistic preference model, thereby demonstrating the impossibility of fully aligning human preferences using reward-based approaches such as reinforcement learning from human feedback. Next, we explore the conditions under which LLMs would employ mixed strategies -- meaning they do not collapse to a single response -- when aligned in the limit using a non-reward-based approach, such as Nash learning from human feedback (NLHF). We identify a necessary and sufficient condition for mixed strategies: the absence of a response that is preferred over all others by a majority. As a blessing, we prove that this condition holds with high probability under the probabilistic preference model, thereby highlighting the statistical possibility of preserving minority preferences without explicit regularization in aligning LLMs. Finally, we leverage insights from our statistical results to design a novel, computationally efficient algorithm for finding Nash equilibria in aligning LLMs with NLHF. Our experiments show that Llama-3.2-1B, aligned with our algorithm, achieves a win rate of 60.55\% against the base model.
Suggested Citation
Kaizhao Liu & Qi Long & Zhekun Shi & Weijie J. Su & Jiancong Xiao, 2025.
"Statistical Impossibility and Possibility of Aligning LLMs with Human Preferences: From Condorcet Paradox to Nash Equilibrium,"
Papers
2503.10990, arXiv.org.
Handle:
RePEc:arx:papers:2503.10990
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.10990. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.