Author
Listed:
- William G. Resh
- Yi Ming
- Xinyao Xia
- Michael Overton
- Gul Nisa Gurbuz
- Brandon De Breuhl
Abstract
This study investigates the near-future impacts of generative artificial intelligence (AI) technologies on occupational competencies across the U.S. federal workforce. We develop a multi-stage Retrieval-Augmented Generation system to leverage large language models for predictive AI modeling that projects shifts in required competencies and to identify vulnerable occupations on a knowledge-by-skill-by-ability basis across the federal government workforce. This study highlights policy recommendations essential for workforce planning in the era of AI. We integrate several sources of detailed data on occupational requirements across the federal government from both centralized and decentralized human resource sources, including from the U.S. Office of Personnel Management (OPM) and various federal agencies. While our preliminary findings suggest some significant shifts in required competencies and potential vulnerability of certain roles to AI-driven changes, we provide nuanced insights that support arguments against abrupt or generic approaches to strategic human capital planning around the development of generative AI. The study aims to inform strategic workforce planning and policy development within federal agencies and demonstrates how this approach can be replicated across other large employment institutions and labor markets.
Suggested Citation
William G. Resh & Yi Ming & Xinyao Xia & Michael Overton & Gul Nisa Gurbuz & Brandon De Breuhl, 2025.
"Complementarity, Augmentation, or Substitutivity? The Impact of Generative Artificial Intelligence on the U.S. Federal Workforce,"
Papers
2503.09637, arXiv.org.
Handle:
RePEc:arx:papers:2503.09637
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.09637. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.