IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.08692.html
   My bibliography  Save this paper

Detecting Crypto Pump-and-Dump Schemes: A Thresholding-Based Approach to Handling Market Noise

Author

Listed:
  • Mahya Karbalaii

Abstract

We propose a simple yet robust unsupervised model to detect pump-and-dump events on tokens listed on the Poloniex Exchange platform. By combining threshold-based criteria with exponentially weighted moving averages (EWMA) and volatility measures, our approach effectively distinguishes genuine anomalies from minor trading fluctuations, even for tokens with low liquidity and prolonged inactivity. These characteristics present a unique challenge, as standard anomaly-detection methods often over-flag negligible volume spikes. Our framework overcomes this issue by tailoring both price and volume thresholds to the specific trading patterns observed, resulting in a model that balances high true-positive detection with minimal noise.

Suggested Citation

  • Mahya Karbalaii, 2025. "Detecting Crypto Pump-and-Dump Schemes: A Thresholding-Based Approach to Handling Market Noise," Papers 2503.08692, arXiv.org.
  • Handle: RePEc:arx:papers:2503.08692
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.08692
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.08692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.