Author
Listed:
- Alex Watts
- Davide Sinesi
- Jacob Greene
Abstract
In the context of decentralized blockchains, accurately simulating the outcome of order flow auctions (OFAs) off-chain is challenging due to adversarial sequencing, encrypted bids, and frequent state changes. Existing approaches, such as deterministic sorting via consensus layer modifications (e.g., MEV taxes) (Robinson and White 2024) and BRAID (Resnick 2024) or atomic execution of aggregated bids (e.g., Atlas) (Watts et al. 2024), remain vulnerable in permissionless settings where limited throughput allows rational adversaries to submit "spoof" bids that block their competitors' access to execution. We propose a new failure cost penalty that applies only when a solution is executed but does not pay its bid or fulfill the order. Combined with an on-chain escrow system, this mechanism empowers applications to asynchronously issue their users a guaranteed minimum outcome before the execution results are finalized. It implies a direct link between blockchain throughput, censorship resistance, and the capital efficiency of auction participants (e.g., solvers), which intuitively extends to execution quality. At equilibrium, bids fully reflect the potential for price improvement between bid submission and execution, but only partially reflect the potential for price declines. This asymmetry unbounded upside for winning bids, limited downside for failed bids, and no loss for losing bids - ultimately benefits users.
Suggested Citation
Alex Watts & Davide Sinesi & Jacob Greene, 2025.
"Using "Failure Costs" to Guarantee Execution Quality in Competitive and Permissionless Order Flow Auctions,"
Papers
2503.05338, arXiv.org, revised Mar 2025.
Handle:
RePEc:arx:papers:2503.05338
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.05338. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.