IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.02991.html
   My bibliography  Save this paper

Bayesian Estimation of Corporate Default Spreads

Author

Listed:
  • Maksim Papenkov
  • Beau Robinette

Abstract

Risk-averse investors often wish to exclude stocks from their portfolios that bear high credit risk, which is a measure of a firm's likelihood of bankruptcy. This risk is commonly estimated by constructing signals from quarterly accounting items, such as debt and income volatility. While such information may provide a rich description of a firm's credit risk, the low-frequency with which the data is released implies that investors may be operating with outdated information. In this paper we circumvent this problem by developing a high-frequency credit risk proxy via corporate default spreads which are estimated from daily bond price data. We accomplish this by adapting classic yield curve estimation methods to a corporate bond setting, leveraging advances in Bayesian estimation to ensure higher model stability when working with small sample data which also allows us to directly model the uncertainty of our predictions.

Suggested Citation

  • Maksim Papenkov & Beau Robinette, 2025. "Bayesian Estimation of Corporate Default Spreads," Papers 2503.02991, arXiv.org.
  • Handle: RePEc:arx:papers:2503.02991
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.02991
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.02991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.