IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.02889.html
   My bibliography  Save this paper

Function-Coherent Gambles with Non-Additive Sequential Dynamics

Author

Listed:
  • Gregory Wheeler

Abstract

The desirable gambles framework provides a rigorous foundation for imprecise probability theory but relies heavily on linear utility via its coherence axioms. In our related work, we introduced function-coherent gambles to accommodate non-linear utility. However, when repeated gambles are played over time -- especially in intertemporal choice where rewards compound multiplicatively -- the standard additive combination axiom fails to capture the appropriate long-run evaluation. In this paper we extend the framework by relaxing the additive combination axiom and introducing a nonlinear combination operator that effectively aggregates repeated gambles in the log-domain. This operator preserves the time-average (geometric) growth rate and addresses the ergodicity problem. We prove the key algebraic properties of the operator, discuss its impact on coherence, risk assessment, and representation, and provide a series of illustrative examples. Our approach bridges the gap between expectation values and time averages and unifies normative theory with empirically observed non-stationary reward dynamics.

Suggested Citation

  • Gregory Wheeler, 2025. "Function-Coherent Gambles with Non-Additive Sequential Dynamics," Papers 2503.02889, arXiv.org.
  • Handle: RePEc:arx:papers:2503.02889
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.02889
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.02889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.