IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.00320.html
   My bibliography  Save this paper

Shifting Power: Leveraging LLMs to Simulate Human Aversion in ABMs of Bilateral Financial Exchanges, A bond market study

Author

Listed:
  • Alicia Vidler
  • Toby Walsh

Abstract

Bilateral markets, such as those for government bonds, involve decentralized and opaque transactions between market makers (MMs) and clients, posing significant challenges for traditional modeling approaches. To address these complexities, we introduce TRIBE an agent-based model augmented with a large language model (LLM) to simulate human-like decision-making in trading environments. TRIBE leverages publicly available data and stylized facts to capture realistic trading dynamics, integrating human biases like risk aversion and ambiguity sensitivity into the decision-making processes of agents. Our research yields three key contributions: first, we demonstrate that integrating LLMs into agent-based models to enhance client agency is feasible and enriches the simulation of agent behaviors in complex markets; second, we find that even slight trade aversion encoded within the LLM leads to a complete cessation of trading activity, highlighting the sensitivity of market dynamics to agents' risk profiles; third, we show that incorporating human-like variability shifts power dynamics towards clients and can disproportionately affect the entire system, often resulting in systemic agent collapse across simulations. These findings underscore the emergent properties that arise when introducing stochastic, human-like decision processes, revealing new system behaviors that enhance the realism and complexity of artificial societies.

Suggested Citation

  • Alicia Vidler & Toby Walsh, 2025. "Shifting Power: Leveraging LLMs to Simulate Human Aversion in ABMs of Bilateral Financial Exchanges, A bond market study," Papers 2503.00320, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2503.00320
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.00320
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.00320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.