IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.00290.html
   My bibliography  Save this paper

Uniform Limit Theory for Network Data

Author

Listed:
  • Yuya Sasaki

Abstract

I present a novel uniform law of large numbers (ULLN) for network-dependent data. While Kojevnikov, Marmer, and Song (KMS, 2021) provide a comprehensive suite of limit theorems and a robust variance estimator for network-dependent processes, their analysis focuses on pointwise convergence. On the other hand, uniform convergence is essential for nonlinear estimators such as M and GMM estimators (e.g., Newey and McFadden, 1994, Section 2). Building on KMS, I establish the ULLN under network dependence and demonstrate its utility by proving the consistency of both M and GMM estimators. A byproduct of this work is a novel maximal inequality for network data, which may prove useful for future research beyond the scope of this paper.

Suggested Citation

  • Yuya Sasaki, 2025. "Uniform Limit Theory for Network Data," Papers 2503.00290, arXiv.org.
  • Handle: RePEc:arx:papers:2503.00290
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.00290
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.00290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.