IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.00227.html
   My bibliography  Save this paper

The Learning Approach to Games

Author

Listed:
  • Melih .Ic{s}eri
  • Erhan Bayraktar

Abstract

This work provides a unified framework for exploring games. In existing literature, strategies of players are typically assigned scalar values, and the concept of Nash equilibrium is used to identify compatible strategies. However, this approach lacks the internal structure of a player, thereby failing to accurately model observed behaviors in reality. To address this limitation, we propose to characterize players by their learning algorithms, and as their estimations intrinsically induce a distribution over strategies, we introduced the notion of equilibrium in terms of characterizing the recurrent behaviors of the learning algorithms. This approach allows for a more nuanced understanding of players, and brings the focus to the challenge of learning that players face. While our explorations in discrete games, mean-field games, and reinforcement learning demonstrate the framework's broad applicability, they also set the stage for future research aimed at specific applications.

Suggested Citation

  • Melih .Ic{s}eri & Erhan Bayraktar, 2025. "The Learning Approach to Games," Papers 2503.00227, arXiv.org.
  • Handle: RePEc:arx:papers:2503.00227
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.00227
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.00227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.