IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.19861.html
   My bibliography  Save this paper

Social Influence Distorts Ratings in Online Interfaces

Author

Listed:
  • Marina Kontalexi
  • Alexandros Gelastopoulos
  • Pantelis P. Analytis

Abstract

Theoretical work on sequential choice and large-scale experiments in online ranking and voting systems has demonstrated that social influence can have a drastic impact on social and technological systems. Yet, the effect of social influence on online rating systems remains understudied and the few existing contributions suggest that online ratings would self-correct given enough users. Here, we propose a new framework for studying the effect of social influence on online ratings. We start from the assumption that people are influenced linearly by the observed average rating, but postulate that their propensity to be influenced varies. When the weight people assign to the observed average depends only on their own latent rating, the resulting system is linear, but the long-term rating may substantially deviate from the true mean rating. When the weight people put on the observed average depends on both their own latent rating and the observed average rating, the resulting system is non-linear, and may support multiple equilibria, suggesting that ratings might be path-dependent and deviations dramatic. Our results highlight potential limitations in crowdsourced information aggregation and can inform the design of more robust online rating systems.

Suggested Citation

  • Marina Kontalexi & Alexandros Gelastopoulos & Pantelis P. Analytis, 2025. "Social Influence Distorts Ratings in Online Interfaces," Papers 2502.19861, arXiv.org.
  • Handle: RePEc:arx:papers:2502.19861
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.19861
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.19861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.