IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.19788.html
   My bibliography  Save this paper

Semiparametric Triple Difference Estimators

Author

Listed:
  • Sina Akbari
  • Negar Kiyavash
  • AmirEmad Ghassami

Abstract

The triple difference causal inference framework is an extension of the well-known difference-in-differences framework. It relaxes the parallel trends assumption of the difference-in-differences framework through leveraging data from an auxiliary domain. Despite being commonly applied in empirical research, the triple difference framework has received relatively limited attention in the statistics literature. Specifically, investigating the intricacies of identification and the design of robust and efficient estimators for this framework has remained largely unexplored. This work aims to address these gaps in the literature. From the identification standpoint, we present outcome regression and weighting methods to identify the average treatment effect on the treated in both panel data and repeated cross-section settings. For the latter, we relax the commonly made assumption of time-invariant covariates. From the estimation perspective, we consider semiparametric estimators for the triple difference framework in both panel data and repeated cross-sections settings. We demonstrate that our proposed estimators are doubly robust.

Suggested Citation

  • Sina Akbari & Negar Kiyavash & AmirEmad Ghassami, 2025. "Semiparametric Triple Difference Estimators," Papers 2502.19788, arXiv.org.
  • Handle: RePEc:arx:papers:2502.19788
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.19788
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.19788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.