IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.18970.html
   My bibliography  Save this paper

Empirical likelihood approach for high-dimensional moment restrictions with dependent data

Author

Listed:
  • Jinyuan Chang
  • Qiao Hu
  • Zhentao Shi
  • Jia Zhang

Abstract

Economic and financial models -- such as vector autoregressions, local projections, and multivariate volatility models -- feature complex dynamic interactions and spillovers across many time series. These models can be integrated into a unified framework, with high-dimensional parameters identified by moment conditions. As the number of parameters and moment conditions may surpass the sample size, we propose adding a double penalty to the empirical likelihood criterion to induce sparsity and facilitate dimension reduction. Notably, we utilize a marginal empirical likelihood approach despite temporal dependence in the data. Under regularity conditions, we provide asymptotic guarantees for our method, making it an attractive option for estimating large-scale multivariate time series models. We demonstrate the versatility of our procedure through extensive Monte Carlo simulations and three empirical applications, including analyses of US sectoral inflation rates, fiscal multipliers, and volatility spillover in China's banking sector.

Suggested Citation

  • Jinyuan Chang & Qiao Hu & Zhentao Shi & Jia Zhang, 2025. "Empirical likelihood approach for high-dimensional moment restrictions with dependent data," Papers 2502.18970, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2502.18970
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.18970
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.18970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.