IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.17493.html
   My bibliography  Save this paper

Pursuing Top Growth with Novel Loss Function

Author

Listed:
  • Ruoyu Guo
  • Haochen Qiu

Abstract

Making consistently profitable financial decisions in a continuously evolving and volatile stock market has always been a difficult task. Professionals from different disciplines have developed foundational theories to anticipate price movement and evaluate securities such as the famed Capital Asset Pricing Model (CAPM). In recent years, the role of artificial intelligence (AI) in asset pricing has been growing. Although the black-box nature of deep learning models lacks interpretability, they have continued to solidify their position in the financial industry. We aim to further enhance AI's potential and utility by introducing a return-weighted loss function that will drive top growth while providing the ML models a limited amount of information. Using only publicly accessible stock data (open/close/high/low, trading volume, sector information) and several technical indicators constructed from them, we propose an efficient daily trading system that detects top growth opportunities. Our best models achieve 61.73% annual return on daily rebalancing with an annualized Sharpe Ratio of 1.18 over 1340 testing days from 2019 to 2024, and 37.61% annual return with an annualized Sharpe Ratio of 0.97 over 1360 testing days from 2005 to 2010. The main drivers for success, especially independent of any domain knowledge, are the novel return-weighted loss function, the integration of categorical and continuous data, and the ML model architecture. We also demonstrate the superiority of our novel loss function over traditional loss functions via several performance metrics and statistical evidence.

Suggested Citation

  • Ruoyu Guo & Haochen Qiu, 2025. "Pursuing Top Growth with Novel Loss Function," Papers 2502.17493, arXiv.org.
  • Handle: RePEc:arx:papers:2502.17493
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.17493
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.17493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.