IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.15800.html
   My bibliography  Save this paper

LLM Trading: Analysis of LLM Agent Behavior in Experimental Asset Markets

Author

Listed:
  • Thomas Henning
  • Siddhartha M. Ojha
  • Ross Spoon
  • Jiatong Han
  • Colin F. Camerer

Abstract

This paper explores how Large Language Models (LLMs) behave in a classic experimental finance paradigm widely known for eliciting bubbles and crashes in human participants. We adapt an established trading design, where traders buy and sell a risky asset with a known fundamental value, and introduce several LLM-based agents, both in single-model markets (all traders are instances of the same LLM) and in mixed-model "battle royale" settings (multiple LLMs competing in the same market). Our findings reveal that LLMs generally exhibit a "textbook-rational" approach, pricing the asset near its fundamental value, and show only a muted tendency toward bubble formation. Further analyses indicate that LLM-based agents display less trading strategy variance in contrast to humans. Taken together, these results highlight the risk of relying on LLM-only data to replicate human-driven market phenomena, as key behavioral features, such as large emergent bubbles, were not robustly reproduced. While LLMs clearly possess the capacity for strategic decision-making, their relative consistency and rationality suggest that they do not accurately mimic human market dynamics.

Suggested Citation

  • Thomas Henning & Siddhartha M. Ojha & Ross Spoon & Jiatong Han & Colin F. Camerer, 2025. "LLM Trading: Analysis of LLM Agent Behavior in Experimental Asset Markets," Papers 2502.15800, arXiv.org.
  • Handle: RePEc:arx:papers:2502.15800
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.15800
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.15800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.