IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.15726.html
   My bibliography  Save this paper

Bankruptcy analysis using images and convolutional neural networks (CNN)

Author

Listed:
  • Luiz Tavares
  • Jose Mazzon
  • Francisco Paletta
  • Fabio Barros

Abstract

The marketing departments of financial institutions strive to craft products and services that cater to the diverse needs of businesses of all sizes. However, it is evident upon analysis that larger corporations often receive a more substantial portion of available funds. This disparity arises from the relative ease of assessing the risk of default and bankruptcy in these more prominent companies. Historically, risk analysis studies have focused on data from publicly traded or stock exchange-listed companies, leaving a gap in knowledge about small and medium-sized enterprises (SMEs). Addressing this gap, this study introduces a method for evaluating SMEs by generating images for processing via a convolutional neural network (CNN). To this end, more than 10,000 images, one for each company in the sample, were created to identify scenarios in which the CNN can operate with higher assertiveness and reduced training error probability. The findings demonstrate a significant predictive capacity, achieving 97.8% accuracy, when a substantial number of images are utilized. Moreover, the image creation method paves the way for potential applications of this technique in various sectors and for different analytical purposes.

Suggested Citation

  • Luiz Tavares & Jose Mazzon & Francisco Paletta & Fabio Barros, 2025. "Bankruptcy analysis using images and convolutional neural networks (CNN)," Papers 2502.15726, arXiv.org.
  • Handle: RePEc:arx:papers:2502.15726
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.15726
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.15726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.