Author
Listed:
- Matias D. Cattaneo
(Rae)
- Yihan He
(Rae)
- Ruiqi
(Rae)
- Yu
Abstract
Uncertainty quantification in causal inference settings with random network interference is a challenging open problem. We study the large sample distributional properties of the classical difference-in-means Hajek treatment effect estimator, and propose a robust inference procedure for the (conditional) direct average treatment effect, allowing for cross-unit interference in both the outcome and treatment equations. Leveraging ideas from statistical physics, we introduce a novel Ising model capturing interference in the treatment assignment, and then obtain three main results. First, we establish a Berry-Esseen distributional approximation pointwise in the degree of interference generated by the Ising model. Our distributional approximation recovers known results in the literature under no-interference in treatment assignment, and also highlights a fundamental fragility of inference procedures developed using such a pointwise approximation. Second, we establish a uniform distributional approximation for the Hajek estimator, and develop robust inference procedures that remain valid regardless of the unknown degree of interference in the Ising model. Third, we propose a novel resampling method for implementation of robust inference procedure. A key technical innovation underlying our work is a new \textit{De-Finetti Machine} that facilitates conditional i.i.d. Gaussianization, a technique that may be of independent interest in other settings.
Suggested Citation
Matias D. Cattaneo & Yihan He & Ruiqi & Yu, 2025.
"Robust Inference for the Direct Average Treatment Effect with Treatment Assignment Interference,"
Papers
2502.13238, arXiv.org.
Handle:
RePEc:arx:papers:2502.13238
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.13238. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.