IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.03194.html
   My bibliography  Save this paper

Efficient Triangular Arbitrage Detection via Graph Neural Networks

Author

Listed:
  • Di Zhang

Abstract

Triangular arbitrage is a profitable trading strategy in financial markets that exploits discrepancies in currency exchange rates. Traditional methods for detecting triangular arbitrage opportunities, such as exhaustive search algorithms and linear programming solvers, often suffer from high computational complexity and may miss potential opportunities in dynamic markets. In this paper, we propose a novel approach to triangular arbitrage detection using Graph Neural Networks (GNNs). By representing the currency exchange network as a graph, we leverage the powerful representation and learning capabilities of GNNs to identify profitable arbitrage opportunities more efficiently. Specifically, we formulate the triangular arbitrage problem as a graph-based optimization task and design a GNN architecture that captures the complex relationships between currencies and exchange rates. We introduce a relaxed loss function to enable more flexible learning and integrate Deep Q-Learning principles to optimize the expected returns. Our experiments on a synthetic dataset demonstrate that the proposed GNN-based method achieves a higher average yield with significantly reduced computational time compared to traditional methods. This work highlights the potential of using GNNs for solving optimization problems in finance and provides a promising approach for real-time arbitrage detection in dynamic financial markets.

Suggested Citation

  • Di Zhang, 2025. "Efficient Triangular Arbitrage Detection via Graph Neural Networks," Papers 2502.03194, arXiv.org.
  • Handle: RePEc:arx:papers:2502.03194
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.03194
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.03194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.