IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.00475.html
   My bibliography  Save this paper

Serial-Dependence and Persistence Robust Inference in Predictive Regressions

Author

Listed:
  • Jean-Yves Pitarakis

Abstract

This paper introduces a new method for testing the statistical significance of estimated parameters in predictive regressions. The approach features a new family of test statistics that are robust to the degree of persistence of the predictors. Importantly, the method accounts for serial correlation and conditional heteroskedasticity without requiring any corrections or adjustments. This is achieved through a mechanism embedded within the test statistics that effectively decouples serial dependence present in the data. The limiting null distributions of these test statistics are shown to follow a chi-square distribution, and their asymptotic power under local alternatives is derived. A comprehensive set of simulation experiments illustrates their finite sample size and power properties.

Suggested Citation

  • Jean-Yves Pitarakis, 2025. "Serial-Dependence and Persistence Robust Inference in Predictive Regressions," Papers 2502.00475, arXiv.org.
  • Handle: RePEc:arx:papers:2502.00475
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.00475
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.00475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.