IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.00029.html
   My bibliography  Save this paper

AlphaSharpe: LLM-Driven Discovery of Robust Risk-Adjusted Metrics

Author

Listed:
  • Kamer Ali Yuksel
  • Hassan Sawaf

Abstract

Financial metrics like the Sharpe ratio are pivotal in evaluating investment performance by balancing risk and return. However, traditional metrics often struggle with robustness and generalization, particularly in dynamic and volatile market conditions. This paper introduces AlphaSharpe, a novel framework leveraging large language models (LLMs) to iteratively evolve and optimize financial metrics to discover enhanced risk-return metrics that outperform traditional approaches in robustness and correlation with future performance metrics by employing iterative crossover, mutation, and evaluation. Key contributions of this work include: (1) a novel use of LLMs to generate and refine financial metrics with implicit domain-specific knowledge, (2) a scoring mechanism to ensure that evolved metrics generalize effectively to unseen data, and (3) an empirical demonstration of 3x predictive power for future risk-returns, and 2x portfolio performance. Experimental results in a real-world dataset highlight the superiority of discovered metrics, making them highly relevant to portfolio managers and financial decision-makers. This framework not only addresses the limitations of existing metrics but also showcases the potential of LLMs in advancing financial analytics, paving the way for informed and robust investment strategies.

Suggested Citation

  • Kamer Ali Yuksel & Hassan Sawaf, 2025. "AlphaSharpe: LLM-Driven Discovery of Robust Risk-Adjusted Metrics," Papers 2502.00029, arXiv.org, revised Feb 2025.
  • Handle: RePEc:arx:papers:2502.00029
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.00029
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.00029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.