IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.18868.html
   My bibliography  Save this paper

Examining the Impact of Income Inequality and Gender on School Completion in Malaysia: A Machine Learning Approach Utilizing Malaysia's Public Sector Open Data

Author

Listed:
  • Muhammad Sukri Bin Ramli

Abstract

This study examines the relationship between income inequality, gender, and school completion rates in Malaysia using machine learning techniques. The dataset utilized is from the Malaysia's Public Sector Open Data Portal, covering the period 2016-2022. The analysis employs various machine learning techniques, including K-means clustering, ARIMA modeling, Random Forest regression, and Prophet for time series forecasting. These models are used to identify patterns, trends, and anomalies in the data, and to predict future school completion rates. Key findings reveal significant disparities in school completion rates across states, genders, and income levels. The analysis also identifies clusters of states with similar completion rates, suggesting potential regional factors influencing educational outcomes. Furthermore, time series forecasting models accurately predict future completion rates, highlighting the importance of ongoing monitoring and intervention strategies. The study concludes with recommendations for policymakers and educators to address the observed disparities and improve school completion rates in Malaysia. These recommendations include targeted interventions for specific states and demographic groups, investment in early childhood education, and addressing the impact of income inequality on educational opportunities. The findings of this study contribute to the understanding of the factors influencing school completion in Malaysia and provide valuable insights for policymakers and educators to develop effective strategies to improve educational outcomes.

Suggested Citation

  • Muhammad Sukri Bin Ramli, 2025. "Examining the Impact of Income Inequality and Gender on School Completion in Malaysia: A Machine Learning Approach Utilizing Malaysia's Public Sector Open Data," Papers 2501.18868, arXiv.org.
  • Handle: RePEc:arx:papers:2501.18868
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.18868
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.18868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.