IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.14736.html
   My bibliography  Save this paper

NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance

Author

Listed:
  • Li-Chun Huang

Abstract

In this study, we applied the NEAT (NeuroEvolution of Augmenting Topologies) algorithm to stock trading using multiple technical indicators. Our approach focused on maximizing earning, avoiding risk, and outperforming the Buy & Hold strategy. We used progressive training data and a multi-objective fitness function to guide the evolution of the population towards these objectives. The results of our study showed that the NEAT model achieved similar returns to the Buy & Hold strategy, but with lower risk exposure and greater stability. We also identified some challenges in the training process, including the presence of a large number of unused nodes and connections in the model architecture. In future work, it may be worthwhile to explore ways to improve the NEAT algorithm and apply it to shorter interval data in order to assess the potential impact on performance.

Suggested Citation

  • Li-Chun Huang, 2024. "NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance," Papers 2501.14736, arXiv.org.
  • Handle: RePEc:arx:papers:2501.14736
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.14736
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.14736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.