IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.09760.html
   My bibliography  Save this paper

Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure

Author

Listed:
  • Yuxi Hong

Abstract

Accurate stock market prediction provides great opportunities for informed decision-making, yet existing methods struggle with financial data's non-linear, high-dimensional, and volatile characteristics. Advanced predictive models are needed to effectively address these complexities. This paper proposes a novel multi-layer hybrid multi-task learning (MTL) framework aimed at achieving more efficient stock market predictions. It involves a Transformer encoder to extract complex correspondences between various input features, a Bidirectional Gated Recurrent Unit (BiGRU) to capture long-term temporal relationships, and a Kolmogorov-Arnold Network (KAN) to enhance the learning process. Experimental evaluations indicate that the proposed learning structure achieves great performance, with an MAE as low as 1.078, a MAPE as low as 0.012, and an R^2 as high as 0.98, when compared with other competitive networks.

Suggested Citation

  • Yuxi Hong, 2025. "Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure," Papers 2501.09760, arXiv.org.
  • Handle: RePEc:arx:papers:2501.09760
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.09760
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.09760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.