IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.03092.html
   My bibliography  Save this paper

Societal Adaptation to AI Human-Labor Automation

Author

Listed:
  • Yuval Rymon

Abstract

AI is transforming human labor at an unprecedented pace - improving 10$\times$ per year in training effectiveness. This paper analyzes how society can adapt to AI-driven human-labor automation (HLA), using Bernardi et al.'s societal adaptation framework. Drawing on literature from general automation economics and recent AI developments, the paper develops a "threat model." The threat model is centered on mass unemployment and its socioeconomic consequences, and assumes a non-binary scenario between full AGI takeover and swift job creation. The analysis explores both "capability-modifying interventions" (CMIs) that shape how AI develops, and "adaptation interventions" (ADIs) that help society adjust. Key interventions analyzed include steering AI development toward human-complementing capabilities, implementing human-in-the-loop requirements, taxation of automation, comprehensive reorientation of education, and both material and social substitutes for work. While CMIs can slow the transition in the short-term, significant automation is inevitable. Long-term adaptation requires ADIs - from education reform to providing substitutes for both the income and psychological benefits of work. Success depends on upfront preparation through mechanisms like "if-then commitments", and crafting flexible and accurate regulation that avoids misspecification. This structured analysis of HLA interventions and their potential effects and challenges aims to guide holistic AI governance strategies for the AI economy.

Suggested Citation

  • Yuval Rymon, 2024. "Societal Adaptation to AI Human-Labor Automation," Papers 2501.03092, arXiv.org.
  • Handle: RePEc:arx:papers:2501.03092
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.03092
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.03092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.