IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.01954.html
   My bibliography  Save this paper

Grid-level impacts of renewable energy on thermal generation: efficiency, emissions and flexibility

Author

Listed:
  • Dhruv Suri
  • Jacques de Chalendar
  • Ines Azevedo

Abstract

Wind and solar generation constitute an increasing share of electricity supply globally. We find that this leads to shifts in the operational dynamics of thermal power plants. Using fixed effects panel regression across seven major U.S. balancing authorities, we analyze the impact of renewable generation on coal, natural gas combined cycle plants, and natural gas combustion turbines. Wind generation consistently displaces thermal output, while effects from solar vary significantly by region, achieving substantial displacement in areas with high solar penetration such as the California Independent System Operator but limited impacts in coal reliant grids such as the Midcontinent Independent System Operator. Renewable energy sources effectively reduce carbon dioxide emissions in regions with flexible thermal plants, achieving displacement effectiveness as high as one hundred and two percent in the California Independent System Operator and the Electric Reliability Council of Texas. However, in coal heavy areas such as the Midcontinent Independent System Operator and the Pennsylvania New Jersey Maryland Interconnection, inefficiencies from ramping and cycling reduce carbon dioxide displacement to as low as seventeen percent and often lead to elevated nitrogen oxides and sulfur dioxide emissions. These findings underscore the critical role of grid design, fuel mix, and operational flexibility in shaping the emissions benefits of renewables. Targeted interventions, including retrofitting high emitting plants and deploying energy storage, are essential to maximize emissions reductions and support the decarbonization of electricity systems.

Suggested Citation

  • Dhruv Suri & Jacques de Chalendar & Ines Azevedo, 2025. "Grid-level impacts of renewable energy on thermal generation: efficiency, emissions and flexibility," Papers 2501.01954, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2501.01954
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.01954
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.01954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.